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Abstract

The N - body problem is to simulate the motion of N particles
under the influence of mutual force fields based on an inverse
square law. Greengard’s algorithm claims to compute the cu-
mulative force on each particle in O ( N ) time for a fixed preci-
sion irrespective of the distribution of the particles. In this pa-
per, we show that Greengard’s algorithm is distribution depen-
dent and has a lower bound of Q(N log?N) in two dimensions
and Q(N log“N) in three dimensions. We analyze the Greengard
and Barnes-Hut algorithms and show that they are unbounded
for arbitrary distributions. We also present a truly distribution
independent algorithm for solving the N-body problem inO (N
log N) time in two dimensionsand in O (N log 2N) time in three
dimensions.

1 Introduction

A large umber of plgsical systems can be studied
by simulating the interactions between the particles co
stituting the system. In a typical system each patrticle
influences eery other paticle, often based on an in-

verse square law sh@as N&ton’s lav of gravitation

or Coulombs law of electpstdic interaction. Examples

of such plsical systems can beund in astphysics,
plasma piisics,molecular gnamics and uid yham-
ics. Since the simation involves follaving the tajec-

tories of motion of a collection &f particles, the prob-

lem is temed theN-body problem. Apat from tradi-

tional gplicaions in the stug of physical systems,
some problems in numerical complex analysis and el-

liptic pattial differential equéons can also be sad
using this aproach. Applictons of the poblem ae

also found in the radiosity method, which attempts t

create imagesybcomputing the equilitum distribu-
tion of light for complex scene geometries.
Since it is not possie to sole the equigons of

motion for a collection of four or more particles in

closed form, iteratie methods & used to sokrtheN-
body problem. At each diste time inteval, the orce

*This work is supported by the Applied Mathematical Sci-

G.M. Prabhu
Computer Science Dept.
lowa State University
Ames, 1A 50011

John Gustafson
Ames Laboratory
lowa State University
Ames, IA 50011

on each particle is computed and this information is used
to updae the position andelocity of eab paticle. A
straightforward computéion of the brces equires
O(N 2) work per iteation. The mpid gowth with N
effectively limits the umber of patcles tha can be
simulated by this method.

Sevenl gpproadies hae been used teeduce the
complity per itertion. Some of the témiques in-
clude tansfoming the poblem to a position-glocity
phase space, imposing a grid on the system of parti-
cles and computing cell-cell interactions. Such tech-
niques eitherdil to model the system acatel or de-
grade toO( N ?) complexity for non-uniform distribu-
tions of the particles.

n-

Recently,a nev class of paicle sinulation meth-
ods have emerged to solve tiidody problem. These
methods ar characteried by an oganizadion of the par
ticles into a hiearchy of clusters, starting from a clus-
ter containing all the particles to clusters containing the
individual paticles. These methodsausualy referred

to ashierarchical methodsor tree methodsSud a
method vas frst pioposed g Appel [2],whose sheme
allows for clusters with arbitrary shapes.

A number of algrithms llowed the vark of Appel.
Widely respected among these are the Barnes- Hut [4]
and the Greengdil 7] methods. Both ¢eend on a da

%tructue constucted ly a ixed hieardical cubical sub-

division of the spaceSalmon [14] studies the Bas-
Hut algoithm in great detail. While ppel and Bares-

Hut adieve requiled accuacy by resticting which dus-

ters ma interact, Greengad usesnultipole expansions

[7] to approximate the interactions to the desired preci-
sion. With the notéle exception of Geengardmost
researcherpaid little #ention to aigorous worst-case

ences Program of the Ames Laboratory-USDOEunder contract COMPI&ity analsis of their algrithms. Geengrd
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claims his algorithm reduces the complexityQt¢ N )



per iteration.

3
(
In this paer, we shav tha the Geengrd’s al- 1
gorithm is noO (N), as claimed. Both Barnes-Hut and n_lﬂ
Greengard methods deend on the same ®@astuc- ("2
ture, which we show is distribution-dependent. For the
distribution that esults in the smallestin- ning time
we shav tha Greengards algprithm is O (Nlog?N) in

two dimensions an® ( Nlog*N) in three dimensions.
Both algorithms ae unboundedadr arbitary distibu-
tions.

e

We have designed a hiarchical dda stucture
whose sie dgends entely upon the nmber of par
ticles and is independent of the distribution of the par-
ticles. Both Geengards and Bames-Hut algrithms can
be used in conjunction with this data structure to re- _ o
duce their compbety. Apart from reducing the com- Figure 1: Barnes-Hut physical subdvision of space
plexity of the Barnes-Hut algorithm, the data structur€Pr a collection of three particles in two dimensions.
also pemits moe accuate eror estimaon. The nulti- ) )
pole algorithm designed using this data structure has a The same data structure is used in both methods,

compleity of O (N log N ) in two dimensions an@ (N constucted asdllows: Begin with a cell (squag in two
log? N ) in three dimen siondlo the best of our kiva- dimensions and cube in three dimensions) big enough

edge,this is the &stest distbution-independent alg- 10 contain all the pécles. Subdiide the cell into 2
rithm for theN-body problem. cells haing half the side length of theigmal cell
(whered is the number of dimensions). Discard cells

The lest of the pper is oganizd aséllows: In Sec-  tha do not contain anpartides. Stop the subdsion
tion 2, we anayze the compleity of Greengad and Processon cells kiang exactly one paticle. Recusively
Bames-Hut algrithms. We deive lover and upper subdivide the cells that contain more than one particle.

bounds on the data structure used in these algorithrh&!S Cursie subdrision of the space into cells istoa
and use thisasult to dispove daims on their comple rally represented by a tree, which we shall refer to as
ity. Section 3 contains the deigtion of our new hier- the Barnes-Hut (BH) tree.

archical daa stucture. V¢ also she how to use the

Greengad and Banes-Hut algrithms on this dm stuc- ~ Figure 1 shevs the Banes-Hut plsical subdri-
ture.An algorithm to cede this nev dda stucture is  SION of the space for a collection of three particles posi-
described in Section 4. tioned as shen. The coresponding BH &e is shan

in Figure 2. For conenience and simplicifya two-di-

2 The complexity of Greengard and Barnes-Hut mensional prblem is discussed.ibthe esults cary over
Algorithms to three-dimensional pblems as wll. In two dimen-
sions, edg cell is subdiided into bur cells and theer

The Geengad and Banes-Hut methodsof comput- sulting structue is a quad-ge In the @ample shown,
ing N-body interactions consist of ta altenaing the first subdivision separates particle 1 from particles
phases, repeated every time step: 2 and 3The net three subdiisions perbrmed to spa-

rate particles 2 and 3 are not successful as one of the
1. Computing a hierarchical tree data structure with child cells a every level of the subdiision contains both
the leaves representing the particles and the rootibe paticles and the other the contain noneThe e-
the tree representing the entire system. cursive subdrision is contimed until the pdrcles 2 and
3 are separated.
2. Traversing this data structure to compute the force
on each patrticle to a specified accuracy.



Figure 2: The Barnes-Hut tree coresponding to the
physical subdivision of space in Figure 1.

From this &ample,it is dear tha a lage rumber of
recursive subdivisions may be required to separate
particles that are very close to each otherN_be the
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Figure 3: Smallest cells thacould possilly contain
two particles tha are s apart in two and three di-
mensions.

In either case, the worst-case path length is
O(Iog D ) and the number of nodes in the tree is

bounded byO(N Iog ).

Greengad assumes the lengih of the cell con-
taining all the pdicles is onewhich can be dueved
by appropride scaling Greengards aguments can be
summarized as follows: For a fixed machine precision,
only cettain dasses of paicle distibutions can be mod-
eled, independent of the algorithm used. Therefore, by

number of particles in the system and let s be the smalkstricting attention to only those particle distributions

est interparticle distance. We requg > 0 towoid in-
finite intelaction brce LetD be the length of a cell
tha can contain all the piacles. Clealy, the worst-case
pah length of the BH &e is gven ly the worst-case
pah needed to garde the two paticles which ae dos-
est to eale other. The siz of the smallest cell thaan

contain two particles apart in two dimensions is

% (% in thee dimensionseeFigure 3).The pahs

separéing the dosest pdicles may contain ecursive
subdivisions until a cell of length smaller t
reachedSince edg subdvision hales the length of the

cells,the maxinum pdh length is gven by the smallest
k for which

D S
— < =
2 V2

\/?D

k=[log
In three dimensions,

<=[log Y22 \/_D

tha can be modeled on @&gn machines has to be no
less than the smallest floating point number represent-
able. Thus, Ig < Is boundedyba constant, termeal

The siz of the tee is boundedybO(pN). Greengard
detemines theunning time of his algrithm in two di-
mensions to bBl(a p2+ B p+y), whereq, B andy are
constants.

The @owe aguments imp} tha the height of the
tree is bounded b§(p), a constant. Yet, we know that
the height of a &e withN leaves and amost a constant
number of childen per node iQ(log N). How can this
disparity be explained?

The problem lies in the assumption that the param-
etersD ands are entirely dependent on the spatial dis-
tribution of the paicles and notelated to the nmber
of paticles N. To undestand vhy this assumption is
invalid, consider the bek&or of SR as a function o.

To minimize the rio B for a fixedN, all the par
ticles should be at a distance sofrom their nearest
neighbors. ® see \y, suppose this is notue. We can
reduceD by ‘moving-in’ paticles tha are farther thars
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Figure 4: The configuration minimizing the ratio of

the cell length containing all the particles and the
smallest intemparticle distance in two dimensions.
The ratio is minimized when all particles are a dis-

tances from their nearest neighbors.

from each other, while keepirsghe same. Or, we can

2 D? 1)D
N 3¢ (1) s =

D

52 GVN

for some constard, . Since this is computed using the
configurdion minimizing the atio§D ,the worst- case

path length (Iog? ) iIQ(log N). In three dimensions,

1

§D 2c,N3

In either case,
Iog§D = Q(log N)

Since Icgs2 is boundedybp, p is alsoQ(log N). The
error in Greengards pioof was the assumption thp
was independent .

How does this déct particle distributions that can
be modeled on a machine with precision paranpgiter
It is alread/ noted thanot all distibutions can be mod-
eled br ary given N = 3 because of pcision limits.
However, unlesp = c log N (c a constant)no distibu-
tion can be modelef tha N. The \ery fact tha we
are able to run aN-body problem for a collection of
particles with precision parametgrmplies thatp > c
log N. Thusp cannot be tadn as a constant in the anal
sis of the unning time of the algrithm and Geengard’s
algorithm is noO(N). Greengard’s time complexity in
two dimensions idN(ap? + Bp +Y), which isQ(N Iog2
N). The thee-dimensional comptéy is N(ap* + Bp? +
y), which isQ(N log* N).

increases by increasing the distance between particles

that are s apart, keepigunchanged. In either case,
D deceases, contradicting minimality. Furthermore

tife paticles nust be paked as bsely as possite. Fg-

ure 4 shavs the corifjuraion minimizing the atio p for

a fixedN in two dimensions. Edtpaticle has si¥ near
est neighba, all & a distances. The paticle is a the

Next, let us ivestigde hav large SR can bedr a
fixed N. For anyN = 3 particlesgD can be madarbi-
trarily large by educing the distance beten the clos-
est particles (thus reducisg or by increasing the spread
of the paticles (thus inceasingD). Hence the worst-
case pth length does not ke an upper bound as a func-

center of the hexagon formed by its nearest neighbotigon of the number of particles and is entirely depen-

The partites do notit in a cell of siz smaller tha x
D. Adding the particles column-wise,

N:Lg+1j+|_gj +|_g + o+ .. I_\%Z 4fiermg

N < §D[2D+1 +D 41

V3s V3s

dent upon the spial distribution of the paicles. This
immediately implies that the size of the BH tree is un-
bounded and can be arhttity large for a ixedN. Since
both the Geengards and Bames-Hut algrithms con-
struct and visit each node in the BH tree at least once,
these algrithms ae unboundeddr arbitiary distribu-
tions.

Clearly, not all paticle distibutions can be mod-



eled on a iyen madine due to prcision limits. Butan  node on sut a pah repesents the same piates, but
algorithm whose running time depends upon the distrusing cells of dierent sizs. Nodes in the BHde are
bution is undesable.An anal@y can be dawn to a used to star aggregae informaion on the collection of
sorting algorithm whose running time depends on theartides thg represent. Br example,the Banes-Hut
size of the mmbes to be sded. The complgity of a method keeps tr&oof the total mass and the center of
sotting algorithm is O(n log n), provided basic ope- mass of the collection of garles. Geengards method
tions on the nmbes to be sded (like compaiison, computes the mitipole expansion of the collection of
copying) can be accomplished in constant tinibe partides. Since eery node on sut a pah represents
compleity of the algorithm does notemainO(nlogn)  the same pécles, they all contain the same iofma-

if this assumption is notalid. But, a sorting algorithm tion. Thereforea modifed tree obtained Y elimina-
with running time as a function of the size of the numing this edundang should contain the same anfma-
bers to be sorted is undesirable. Similarly, it is reasotion as the BH tree.

ade to assume thdhe distibution of the paicles is

representdl in a gven machine but algorithms whose  Consider the tree obtained by replacing every such
running times deend on the digtsution ae undesir  maximal path i the last node on the tha The modi-

able. fied tree has\ leaves,one per pdicle and the oot of
the tree contains al particles, just as in the Barnes-
3 A Modified Data Structure Hut tree. The ony deviation is thd no intenal node can

hawe the same pacles as one of itshaldren. Since the

The BH tee can contain a pflaon which every node  number of particles contained by a node is the sum of
represents the same set of particles, though each ndde number of particles contained by its children, this
represents a cell of a different size. Such a path can translates to the condition that each internal node has at
arbitrarily large irrespecterof the total amber of par- least two children. LeBN) be the number of nodes in
ticles. Eab node on the ph represents a cell ofxe the modifed tree br a collection ofN paticles ind
actly half the length of the celepresentedyits par  dimensions. .
ent. Our intent is to rectify this unbounded nature of the SN)=1+> SN) (2<k<29)
BH tree. i=1

M=~

Letv,,V,, ...,V, (k= 2) be a maximal path in the BH < N =N
tree such that each node of the path represents the same =
set of paticles. The maximality of the gh ensues tha S1)=1

v,'s paent has ma particles tham, and no bild of v,
has the same fadles as/,. Since ony cells haing moie

than one pdicle are subdividedt is impeative thalvk sionsA tree containing\ leaves has a s (N), prov-
haw & least tvo child nodesWe can also assume with- ing the optimality of the modid tree Since eal child

out loss of generality thaf has a parent. Otherwisg,  contains at least one particle less than its parent, the
has to be the root of the tree, thus containing all thgath length is also bounded BN).

particles in the system. By the property of the path

V,, ...,V V, also contains all the particles in the system3.1 The Bames-Hut method using the moditd data

This simply means that our choice of the initial cell igtructure

too lage for the system of pacles and a ce th length _

of it (this is the cell represented kay can contain the In the Barnes-Hut method [4], the BH tree is tra-
entire system. In this caseve can saly malke the versed oncedr every partite in the system topgoroxi-

subtree rooted af be the BH tee. Thereforeif can be mate the force acting on the particle due to the rest of

dth | h h . the systemThe force on aw paticle p is goproximated
assumed that, always has a parent. Furthermaras using the éllowing recursive calculéion: Let| be the

the only child ofv—1 (1 <i <k). length of the cell currently being processed. d.&te
the distance between the particle and the center of mass
Consider such a maximal pathv, ...,Vv, . Every of the cell under consideration.#f B<where (< 0< 1

These equations are satisfied3o\) < 2N — 1,and
the siz of the tee is boundedybO(N) in ary dimen-



is a pespecified accuracy criteriothe cell is teated  rooted aw, , which is the same for both trees. In either
as a single pécle of equvalent mass lotad @ the  case,the brce computtions gve the sameesult on
center of mass for the purpose of force calculation. Othpoth tees. Tie modifed tree ectifies the unbounded
erwiseg the dildren of the cell & examined ecursively  nature of the Barnes-Hut tree without changing the force
to com- pute theoice onp. The force calcultion stats  calculdions of the Bames-Hut algrithm. However, it

by examining the oot cell.This calculéion is repeated  improves the Bames-Hut algrithm in two impotant

once for every particle in the system. ways:First, the unning time of the afgithm is reduced
In fact, the worst-case traversal on the Barnes-Hut tree
Letv, Vv, ...,v, be a maximal path in the BH tree is unbounded as the BHe# is unbounded he modi-

such that each node contains the same particles and fetd tree also allas for more accurate error estimation.
A be the pant ofvl_ In the modifed tree, v, is the  The error in approximating the force between a particle

child of v,. Suppose that the nosigis reached while p and a cluster of particles by treating the cluster as a
travessing the Bames-Hut tee to compute thefce on ~ SINJIE partiee of equvalent mass lodad 4 the center

. . of mass is proportional t() ) , Whelres the radius
a patlcle p. Either the e tavesal stopstaso-mevi 1 of the cluster and is the dlstance of its center of mass
<i<K) or the traversal proceeds to the childrem,of

from p. In the Barnes-Hut algorithm, the error created
Letl(v,) be the length of the ceim(v,) be the center y treating the cell represented by nades a single
of mass, ani! (v;) be the total mass of the particles in particle is therefore proportional to

the cell represented by node Note that ( I(v) 2
d(p, cm(v))
M(v,) = M(v,) = ... =M(v) !
cmv) =cm(v,) = ... =cm(v,) If v, v, ...,v, is a maximal path in the Barnes-Hut tree
I(v,) = Zl(v — 22f(v - 2k1 I(v,) with every node containing the same peles and the
1 3

Barnes-Hut tree traveal stoppedtasomev, (1<i <Kk),

If the traversal stopped at somg1 < i <K), the error made is computed to be proportional to

), )\
dp, cm(v)) (d(p, cm(v))

whered(p, cm(v,)) is the distance from t(_) the center This is an gerestiméion of the eror because thear
of mass of the cell representedbpnd®is the accu-  gjys of the lster of paticles is takn to be(v,) whereas
racy criterion. SII’]CG is the only child of/ the radius is in fact bounded by(v,) = I(v)

(1 <j £K), the force contrlbuted by the subtree rootedA travesal on the modiéd tree computes2the sanmde
atv, is the force betweep and a mass d¥l (v,) I0-  \yith an error estimate proportional to

cated d cm(v,). In travessing the moditd tree,v, is Iv.) 1 (v)

reached instead of. Sincek>1, (d(p—C#]W = 2'2(k—0(a(mv—_5)5
& -1 I(v) <0 The eror estimae & this node is thus impwed by a
d(p, cm(v, )) " 2k d(p, cm(v)) factor of 22—,

The force contributedyithe subtee rooted at, is the

force betweep and a mass dfl(k) located atcm(v,),
which is the same as ther€e contibuted ly the subtee
underv, in the Barnes-Hut tree.

3.2 Green@rd’s method using the modied data
structure

Greengard fast multipole algorithm [7] is a tvo-
: pass procederon the BH te. The fist pass is a bot-
Ifthe Banes-Hut tee tavgsal poceegls to thefl- tom-up tavesal of the tee in vhich ap-term multipole
dren ofv,, the same hgpens in the modé#d tree also. expansion is formed at eyenode of the &e, where
The force contributedylthe subtee rooted a, inthe s a pecision paameter. fie multipole expansions &
Barnes-Hut &e is thedrce contributedythe subtee  the leaves are computed directly. At any internal node,



the multipole expansion isdrmed ly shifting the nul-  p-term local expansion br every patticles also taks

tipole expansions of thelsld nodes to the center of the constant time. Since the number of nodes in the modi-

cell represented pthe node and aihg them tgether.  fied tree isO(N), running the mltipole algorithm on

In the second pasthe tee is tavesed top-dwn to  the modified tree takeS(N) time. This is irespective

compute the locabgpansions at every node. The localof the distribution of the patrticles.

expansion taa node isdrmed ly shifting the local -

pansion &the paent node to its centeshifting the The running time of this algorithm depends on the

multipole expansions of thevell-separateahildren of  compleity of the tee cedion and the compiety of

the nearest neighbors of the parent of the node to iferforming the force calculations. It is already noted

center and adding them together. Finally, the local exhat the force computations can be performe@(iN)

pansions feverty leaf ae evaluaed to compute the time on the modiéd tree In the n&t section, we show

approximae cunulative force on eal paticle. For a  tha the modifed tree can be eiged inO(N log N) time

detailed desgption of Greengard’s algorithnsee [7].  in two dimensions and i@(N log? N) time in three di-
mensionsT hus,the nev multipole algorithm has a com-

Consider aun of the Geengard algrithm on the plexity of O(N log N) in two dimensions an@(N log?
BH tree containing a path, v,, ..., Vv, , where each N) in three dimensions.

node represents the same particles. Sinisethe
only_chlld ofv. (1 <i <k), the rryltlpole &pansion & 4 Creating the Modified Tree
v, _, is formed ly shifting the nultipole expansion of/,

to the center of the celepresented by . The multi-
pole expansiong ghese nodes amerely translations
of one anotheiSincev,, v,, ...,V is a ain,the nulti-
pole expansiong ghese nodes amuseful on} to com
pute the multipole expansion efs parent. However,

the contibution by v;’s nultipole expansion to the mri-
tipole expansion of its parent can be directly obtained 11 plysical space containing the fieles is sub-

by shifting the multipole expansion gfto the center  qiided using cellsA cell is complete} determined by
of the cell represented by the parenvpfThus, cOm-  hq |ength of an edge of the cell and the position of one

puting the raltipole expansions &v,, v, ..., V, ; 1S ofthe coners of the cellThe coner is diosen to be the

unnecessgrand is goided ly the modifed tee A simi- 5int in the cell with the smallesalue br eah cooi-
lar agument shas tha the corect local @pansions®  4te |n two dimensionsthis is the laver, leftmost cor
the leaves can be obtained using the modified tree. ., | eff be the length of a cell. Inger to desdbe the

subcells of this celthe coner of this cell is tadn to be

In the multipole algorithm designed to run on they, . origin. The cell containg®cells of Iengtr% The
modified treethe pecision parametgy is a constant . W .
cells are positioned ait (Z—k J 27) (0<i,j < 2-1)

since it can be chosen independentNofin the | _ _ ook 7
in two dimensionsA line is called &-boundaryif it

Greengard’s algorithnp has a laver bound of Ig N. !
This is becauspis also used as an upper bound on th€ontains an edge of a cell of Iengih . There are

. . |
worst-case path length (jog—) ) of the BH e, which 2+ 1 lines parallel to each axis and spaggd apart
has a laer bound of Ig N. Thereforep cannot be tha arek-boundariesThe intesections of th&-bound-

. . . .
chosen independent bfand is also a function of the anesdetemlne the cells O_f SE -Any k-boundarys
distribution of the paticles. In the raltipole algprithm IS0 @-boundaryfor every] >k. See kgure 5. In thee
on the modikd tree,the pecision paameter is mely dimensionsa k-boundaryis a plane containing a sur
a function of the deséd accuragof the brce calcula- face of a cell of si5c . Note thiethe desdption of the
tions chosen indeendent of the umber and distou- ~ subcells and the boundaries is relative to a cell.
tion of the particles.

This section describes an algorithm to construct the
modified tree Pbr a collection oN patticles. The con-
cepts ae illustrated with two-dimensional ifures br
convenience, it the esults are applicébdto thee-di-
mensional problems as well. First, some terminology:

A simple recursive algorithm for creating the mod-
The nev algorithm consists of tw travessals of the  ified tree br a cell containing a collection of piates is
modified tree Computing thep-term multipole/local ~ given below:
expansionstaa node ta& constant time. Evaluating a
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Figure 5:A cell of length| and the smallest ba b
endosing all the patrticles in this cell.The big dashed
lines are 1boundaries the small dashed lines are 2-
boundariesand the dotted lines ae 3boundaries 2-
boundariesare also 3boundariesand 1-boundaries
are also 2boundariesand 3-boundaries

BuildTre€c)

1. Find the smallest cedf contained irt that still con

tains all the particles contained in cell

2. If c contains no particles, returarhpty treé

3. If ccontains ractl one paticle, retun the one node
treec.

4. Split the celt’ into 29 subcells.

5. For each subcedic of ¢’, BuildTredsc).

6. Return the tree obtained by joining all the trees o

tained in the pvious step, witk’ as the oot of the
tree.

BuildTreeis initially called with a cell layje enough
to contain all the pé#cles in the systeniThe unning
time of BuildTreecan be computedylthe amount of
work done at every node of the modified tree, which is
steps 1-4 and 6. Steps 4 and 6 require a constantamo
of work at evey node of the modiéd tree. Steps 2 and

3 can be accomplished as a byproduct of Step 1, as Wg,, andy,

tion, the corner of is chosen to be the origibetb be

the smallest box (a rectangle in two dimensions) con-
taining all the particles af. The rectangle is given by
(Xmin'ymin)’ (Xmax'ymin)’ (Xmaxymag’ (Xmin’ymag’ Where(min

is the smallest coordinate of all the particles aretc.
The smallest cell in containing all the particles should
also contain the bolx. A cell of siz —'k entosesb iff

no k-boundarypasses tlmughb (see kgure 5). The
smallest cell enclosingis of size ;k=1 ,where is
the smallest inger for which ak-bounday passes
throughb. To determine this, we can examine bound-
aries parallel to each coordinate axis in turn.

Consider boundaes paallel to they-axis. These
can be specifiedybtheir distance tim they—axis. The

family of k-boundariess speciied byi 2k 0<i< 2K,

We need to find the smallest intedieguch that a
k- boundaryparallel toy-axis passes throudti.e. the

smallestk such thatx . <is <x_ for somei. By
minimality of k, only onek-boundarypasses through
b. Let] be the smallest inger such thej < & .. —
X ] = Iog{ X =X (0. There is tleast 1 andta
most 2j- boundarlespassmg througb. These bound-
aries a}re glven by|1=[2 Xmin [] ' and
h? = ﬂj 5] S|n¢e51 anyk boundaryis
alsoaj boundary, forcing thek-bounday passing
throughb to coincide witth, orh,. Leta be
[21 mn O .h, —al; and1 =h, or (a+1)—

f
ol
h, ¢ h,, leta’ be the gen mteger amonga anda+1.

OtherW|se led’ be equal ta. It is clear thaj — kis

H equal to the highest per of 2 tha dividesa’. One

way to find thisis j—k=log,(1+{a U (a-1)}) -1.
Since all the bove operations takconstant timethe
smallest cell contained menclosing the bolk can be
determined in constant time.

It is already established that the modified tree has
O(N) nodes.The tee is ceded top-davn stating a
Lt]fﬁ root. At each noddhe paticles with the smallest

and the lagest coodinaes in eals dimensionX .,

ma>€
1N two dimensions) @& computed to iden-

shall see later. Step 1 can be accomplished as followsify the smallest box enclosing all the particles repre-

Let | be length of the celt passed as input to
BuildTree Any cell smaller thart but contained irc
has Iengthz—k for sonke> 0. By a suitable traf@ma-

sented b the node The smallest cell elhasing this

box is computed and thehitddren of the node deter
mined in constant time. Note that the particles are not
distributed among thehild nodes. Such a distribution



would result inO(N?) time for tree ceaion. Distibut-
ing the particles to the child nodes is not necessary
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